
A Logical Characterization of a

Reactive System Language

Robert Kowalski and Fariba Sadri

Department of Computing

Imperial College London

{rak,fs@doc.ic.ac.uk}

Abstract. Typical reactive system languages are programmed by means of rules

of the form if antecedent then consequent. However, despite their seemingly log-

ical character, hardly any reactive system languages give such rules a logical in-

terpretation. In this paper, we investigate a simplified reactive system language

KELPS, in which rules are universally quantified material implications, and

computation attempts to generate a model that makes the rules true.

 The operational semantics of KELPS is similar to that of other reactive system

languages, and is similarly incomplete. It cannot make a rule true by making its

antecedent false, or by making its consequent true whether or not its antecedent

becomes true. In this paper, we characterize the reactive models computed by

the operational semantics. Informally speaking, a model is reactive if every ac-

tion in the model is an instance of an action in the consequent of a rule whose

earlier conditions are true.

Keywords: reactive systems, model generation, completeness, LPS, KELPS.

1 Introduction

State transition systems play an important role in many areas of Computing. They

underpin the operational semantics of imperative programming languages, the dynam-

ic behavior of database management systems, and many aspects of knowledge repre-

sentation in artificial intelligence. In many of these systems, state transitions are per-

formed by executing reactive rules, which describe relationships between earlier and

later states. Reactive rules occur explicitly as condition-action rules in production

systems, event-condition-action rules in active databases, and transition rules in Ab-

stract State Machines [4]. They are implicit in Statecharts [5] and BDI agents plans.

They are the core of Reaction RuleML [16].

 Simple state transition systems have an operational semantics in which computa-

tion consists in generating a finite sequence act1, … , actn of actions to transform an

initial state S0 into a goal state Sn. In this paper, we investigate the logical semantics of

a state transition system, KELPS, which generates actions by using reactive rules.

Given an initial state S0 and a potentially non-terminating sequence of external events

ext1,…, exti,…, computation in KELPS consists in generating associated sequences

act1, … , acti, ... of actions and states S1, … , Si,, with the purpose of making the

reactive rules true.

 In previous papers [11, 12, 14], we presented a Logic-based agent and Production

System language LPS, which combines reactive rules with logic programs. KELPS

[13] is a simplified Kernel of LPS without logic programs. Its operational semantics is

similar to that of imperative reactive rule languages, which generate sequences of

actions and states, but maintain only a single current state, using destructive state

transformations. However, the reactive rules in KELPS are represented in first-order

logic (FOL), as sentences of the form X [antecedent Y [consequent]], where all

the time-stamps in consequent are constrained to be later than or equal to the latest

time in antecedent

KELPS is not intended to be a practical computer language, but has been simpli-

fied to focus on the main issues concerning the logical semantics of reactive system

languages more generally. It can be regarded as a compiled form of LPS, in which

relations defined intensionally by logic programs are compiled into extensionally

defined predicates, defined by atomic sentences. The resulting kernel language is not

as expressive and well-structured as LPS, but is still very expressive compared with

many other reactive system languages. In particular, antecedents of rules in KELPS

can recognize a large class of complex events, and consequents of rules can generate

complex alternative, conditional plans of actions.

In [11, 12, 14] we showed that the operational semantics (OS) of LPS (and there-

fore of KELPS) is sound: Any sequence of states and events that the OS recognizes as

solving the computational task is indeed a model that makes the reactive rules true.

However, the OS is incomplete, because it generates only reactive models, in which

the consequents of reactive rules are made true after their antecedents become true. It

does not generate models that proactively make consequents true whether or not their

antecedents become true; that make antecedents false, to prevent making their conse-

quents true; or that unnecessarily make their antecedents true, and are then forced to

make their consequents true. Moreover, it does not generate models that contain ac-

tions that are irrelevant to the computational task.
1

Fig. 1 presents an informal illustration of the different kinds of models. In addition

to a single reactive rule, the example also includes a causal theory, used to update

states destructively, and a definition of the temporal constraint predicates, defined

extensionally by means of atomic sentences. All of the models include both the set of

all external events and the set of all actions motivated by the reactive rule and trig-

gered by the external events. The non-reactive models also contain additional, unmo-

tivated or unnecessary actions.

In this paper, we characterize the reactive models I generated by the KELPS OS.

These models all have the property that every action in I is motivated by being an

instance of an action that occurs explicitly in the consequent of a reactive rule whose

earlier conditions are already true. For example, in the reactive model of Fig. 1, the

action dispatch(bob, book, tuesday), is an instance of dispatch(C, Item, T2) in the

consequent of the rule, and all earlier conditions, orders(bob, book, monday) and

1 In section 6.1, we discuss the relationship between these different kinds of models and the

models that are generated using abductive logic programming [7] and the frame axioms of

the event calculus [15]. We will see that reactive models need not be minimal.

reliable(bob, monday), of the associated instance of the rule are true before the time

of the action. However, in the proactive model, although the action dispatch(mary,

book, tuesday) is also an instance of dispatch(C, Item, T2), the earlier instance relia-

ble(mary, monday) of the condition reliable(C, T1) is not true. Moreover, in the irrel-

evant model, the action send-voucher(mary, wednesday) has no relationship with any

of the actions in the rule at all.

 In the remainder of the paper, we present the KELPS language (section 2), its

model-theoretic (section 3) and operational semantics (section 4), the relationship

between the two semantics (section 5), the relationship with Abductive Logic Pro-

gramming [8], MetateM [1] and Transaction Logic [2] (section 6), and future work

(section 7).

If a customer orders an item and the customer is reliable,

then dispatch the item and send an invoice to the customer for the item.

Reactive rule: orders(C, Item, T1) reliable(C, T1)

 dispatch(C, Item, T2) send-invoice(C, Item, T3)

 T1 < T2 T3 T1 + 3

Auxiliary predicate definitions: monday < tuesday, tuesday < wednesday, etc.

Causal theory: initiates(send-invoice(C, Item), payment-due(C, Item))

 terminates(pays-invoice(C, Item), payment-due(C, Item))

Initial state at sunday: reliable(bob)

External events: orders(bob, book, monday), orders(mary, book, monday)

A reactive model: orders(bob, book, monday), orders(mary, book, monday)

 reliable(bob, sunday), reliable(bob, monday), reliable(bob, tuesday), etc.

 send-invoice(bob, book, tuesday), dispatch(bob, book, tuesday),

 payment-due(bob, book, tuesday), payment-due(bob, book, wednesday), etc.

 sunday < monday, monday < tuesday, tuesday < wednesday, etc.

A proactive model: The reactive model with the addition of:

send-invoice(mary, book, tuesday), dispatch(mary, book, tuesday),

payment-due(mary, book, tuesday), payment-due(mary, book, wednesday), etc.

An irrelevant model: The reactive model with the addition of:

send-voucher(mary, wednesday).

 Here the models are all Herbrand models, represented by the set of all atomic

 sentences that are true in the model. In particular, the models contain all the atomic

 sentences needed to define the temporal relations.

Fig. 1. Examples of Models of Reactive Rules in KELPS.

2 The KELPS Language

The operational semantics of KELPS maintains a single current state Si at time i. It

reasons with the reactive rules, to generate a set of actions actsi+1, which it combines

with external events exti+1, to produce a consistent set of concurrent events evi+1 =

exti+1 actsi+1. The events evi+1 are used to update the current state Si, generating the

successor state Si+1 = succ(Si, evi+1).

 In KELPS, states are represented by sets of ground atoms
2
, also called facts or

fluents. Events are also represented by ground atoms. Such sets of ground atoms can

be understood in two ways: They can be understood literally as theories or as Her-

brand interpretations, which are model-theoretic structures. It is this second interpre-

tation that underpins the logical semantics of KELPS.

 States and events can be represented with or without timestamps. The representa-

tion without timestamps facilitates destructive updates, because if a fact is not termi-

nated by a set of events, then the fact without timestamps simply persists from one

state to the next. However, the representation with timestamps makes it possible to

combine all the states and events into a single Herbrand interpretation.

2.1 Vocabulary

KELPS is a first-order, sorted language, including a special sort for time. In the ver-

sion of KELPS presented in this paper, we assume that time is linear and discrete, and

that the succession of time points is represented by the ticks of a logical clock, where

1, 2, ... stand for s(0), s(s(0)), …., t+1 stands for s(t) and t+n stands for s
n
(t). Thus Si

represents the state at time i, and evi+1 represents the set of events taking place in the

transition from state Si to Si+1. Other representations of time are also possible, as illus-

trated informally in Fig. 1.

Predicates: The predicate symbols of the language are partitioned into sets represent-

ing fluents, events, auxiliary predicates and meta-predicates:

Fluent predicates represent facts in the states Si. The last argument i of a

timestamped fluent atom p(t1, …, tn, i) is a time parameter, representing the time i of

the state Si to which the fluent belongs. The unstamped fluent atom p(t1, …, tn) is the

same atom without this timestamp. Fluents can also have other time parameters,

called reference times, for example friday in payment-due(friday, i), which expresses

that at time i payment is due on friday.

Event predicates represent events contributing to the transition from one state to the

next. The last argument of a timestamped event atom e(t1, …, tn, i) is a time parame-

ter, representing the time of the successor state Si. The unstamped event atom e(t1, …,

tn) is the same atom without this time parameter. Event predicates are partitioned into

external event predicates and action predicates.

Auxiliary predicates are of two kinds: time-independent predicates, such as

isa(book, product), and temporal constraint predicates, which express temporal con-

straints, including inequalities of the form i < j or i j between time points, other

2 By atom we mean an atomic formula possibly containing variables. By atomic sentence or

ground atom, we mean an atomic formula not containing variables.

relationships between time points, such as max(T1, T2, T) and min(T1, T2, T), and

arithmetic relationships involving time points, such as plus(T1, 3, T2).

In LPS, auxiliary predicates are defined by logic programs. In KELPS, they are de-

fined more simply by a (possibly infinite) set Aux of atomic sentences. This assump-

tion that the temporal constraint predicates are defined by sets of ground atoms is the

same as the assumption made in the semantics of constraint predicates in constraint

logic programming (CLP) [6]. The KELPS OS exploits this relationship with CLP by

using a constraint solver to check temporal constraints for satisfiability. As is com-

mon in the theory of CLP, it is sufficient to ensure that constraints are satisfiable.

However, in practice, it is useful also to simplify the constraints.

The meta-predicates consist of the two predictates initiates(events, fluent) and ter-

minates(events, fluent), which are used to specify the postconditions of events and to

perform state transitions, as illustrated in Fig. 1. The first argument is a set of events,

to cater for the case where two events together have different effects from the indi-

vidual events on their own (such as buying two books and getting the cheaper one for

half price). In LPS, these meta-predicates are defined by a logic program. In KELPS,

they are defined by a set of atomic sentences
3
 in a causal theory C, which also con-

tains constraints on the preconditions and co-occurrence of events.
4

2.2 KELPS Framework

Definition. A KELPS framework (or program) is a triple <R, Aux, C>, where R is a

set of reactive rules, Aux is a set of ground atoms defining auxiliary predicates, and C

is a causal theory.

Rules in R are constructed from formulas that represent complex events or plans,

expressed as conjunctions of state conditions, event atoms, and temporal constraints.

Operationally, state conditions are queries to the current state, treated as a database.

Like relational database queries, state conditions can be formulas of FOL. For exam-

ple, the state condition It D [manages(M, D, T) item(It, D) instock(It, T)]

behaves as a query that returns managers M all of whose departments D have all of

their items It in stock at time T.

Definition. A state condition is an FOL formula whose atoms are either time-

independent predicates or fluent atoms having the same timestamp, which is unbound

in the condition.

Rules can have disjunctive consequents. For example:

 orders(C, Item, T1)

 [dispatch(C, Item, T2) send-invoice(C, Item, T3) T1 < T2 T3 T1 + 3]

 [send-apology(C, Item, T4) T1 < T4 T1 + 5]]

3 In the examples, in Fig. 1 and elsewhere in the paper, we use universally quantified sentences

as a shorthand for the set of all their well-sorted ground instances.
4 In earlier papers, this causal theory was called a “domain theory”.

Different alternatives in the consequent can have different deadlines. If the antecedent

becomes true, then the plan with the earliest deadline can be attempted first. If it fails

to be achieved within the deadline, then an alternative plan with a later deadline can

be attempted. However, any actions performed in the earlier, partially executed plan

cannot be directly undone. Any “backtracking” to try an alternative plan must be per-

formed in the context of the state updated by the successful actions in the failed plan.

Definition. A reactive rule is a sentence of the form:

 X [antecedent Y [consequent]] where:

 consequent is a disjunction consequent1 ... consequentn.

 X is the set of all variables, including time variables, that occur in antecedent

and are not bound in state conditions. Y is the set of all variables, including time

variables, that occur only in consequent and are not bound in state conditions.

 antecedent and each consequenti is a conjunction of state conditions, event at-

oms and temporal constraints.

 The only variables occurring in temporal constraints are those that occur in state

conditions and event atoms of the rule, or ones that are functionally dependent

on such variables.

 All the timestamps in Y are constrained in the consequent to be later than or

equal to the timestamps in X.
5

Because of the restrictions on the quantification of variables, and the logical equiva-

lence Y[p q] Y p Z q, we can omit the quantifiers X and Y, and simply

write antecedent consequent or antecedent consequent1 ... consequentn.

Definition. A causal theory, C = Cpost Cpre, consists of two parts: Cpost is a set of

atomic sentences defining the predicates initiates and terminates. Cpre is a set of sen-

tences of the formX [antecedent false], where antecedent is a conjunction consist-

ing of a single state condition with timestamp T and event atoms with timestamp T+1,

where T is included in X.

For example, the preconditions for dispatch(C, Item, T) in Fig. 1 might include:

dispatch(C1, Item, T) dispatch(C2, Item, T) C1 C2 false

dispatch(C, Item, T+1) ¬ instock(Item, T) false

where instock(Item) is a fluent, initiated and terminated by the actions stock(Item) and

dispatch(C, Item), respectively.

The definitions of the predicates initiates and terminates by means of atomic sen-

tences is similar to the use of add-lists and delete-lists in STRIPS [19]. However, it is

more general, because the first argument is a set of events. Stating explicitly the flu-

ents initiated and terminated by every possible set of concurrent events is not very

5 More precisely, for every substitution that replaces the time variables in X and Y by ground

times and such that the temporal constraints in consequent are true in Aux, the all time-

stamps in consequent are later than or equal to the latest timestamp in antecedent .

practical, but it clarifies the model-theoretic semantics and simplifies the operational

semantics. Moreover, it paves the way for the more practical representation in which

the initiates and terminates predicates are defined by logic programs in LPS.

Reactive rules R and preconditions Cpre have the same semantics. Moreover, they

both have a deontic (but non-modal) character. The reactive rules specify obligations

that must be fulfilled, typically by performing actions, whereas the preconditions

specify combinations of state conditions and actions that are prohibited.

3 The KELPS Model-theoretic Semantics

In the model-theoretic semantics of KELPS, the reactive rules R and preconditions

Cpre are interpreted according to the standard, non-modal semantics of classical first-

order logic. This contrasts with the semantics of modal logics, in which states are

represented by possible worlds, linked by accessibility relations. In KELPS, states and

events are timestamped and included in a single model-theoretic structure.

Definition. If <R, Aux, C> is a KELPS framework, S is a set of unstamped fluents,

representing a single state, and ev is a set of unstamped events, representing concur-

rent events, then the associated successor state is:

 succ(S, ev) = (S – {p | terminates(ev, p) Cpost }) {p | initiates(ev, p) Cpost}.

Notation. If Si is a set of fluents without timestamps, then Si* represents the same set

of fluents with the timestamp i. If eventsi is a set of concurrent events without time-

stamps, all taking place in the transition from state Si-1 to state Si, then eventsi* repre-

sents the same set of events with the timestamp i.

If S0 is an initial state, ext1, … , exti, …, is a sequence of sets of external events

and acts1, … , actsi, … is a sequence of sets of actions, then:

S* = S0* S1* … Si* … where Si+1 = succ(Si, evi+1)

ev* = ev1* ev2* … evi* … where evi = exti actsi, for i 1.

Computation in conventional reactive systems consists in generating a stream act1, …,

acti, … of actions in response to a stream of external events ext1, … exti, …. Compu-

tation in KELPS is similar, but it has a purpose, which conventional reactive systems

lack, namely to make rules and the preconditions of actions true:

Definition. Given a KELPS framework <R, Aux, C>, an initial state S0 and a se-

quence ext1,…, exti of sets of external events, the computational task is to generate

sets actsi+1 of actions for every i ≥ 0, such that R Cpre is true in the Herbrand inter-

pretation M = Aux S* ev*.

The definition of truth is the classical definition for FOL. It allows the generation of

actions that make the rules true by making their antecedents false, or by making their

consequents true whether their antecedents are true or false. It also allows actions that

are irrelevant to the task. In this paper, we identify the reactive models that can be

generated by the OS.

 Note that the generated actions actsi+1 in KELPS need not be a direct reaction to

the current situation Si* evi*, but can be a partial response to some subsequence of

earlier states and events. Nor need the choice of actions be deterministic. There can be

several different sets of actions actsi+1 that can be chosen for execution in the transi-

tion from a given state Si to the next state Si+1 and there can be many different models

M that satisfy a given computational task. However, once an action has been chosen

and successfully executed, it cannot be directly undone. At best, it may be possible

only to choose and execute other actions to reverse its effects.

3.1 Herbrand interpretations

The semantics of Herbrand interpretations is a simplified version of the standard se-

mantics of first-order logic.

Definition. Given the vocabulary of a sorted first-order language, the Herbrand uni-

verse is the set of all well-sorted ground (i.e variable-free) terms that can be con-

structed from the constants and function symbols of the vocabulary. The Herbrand

base is the set of all well-sorted ground atoms that can be constructed from the predi-

cate symbols and the ground terms of the vocabulary. A Herbrand interpretation is a

subset of the Herbrand base. A Herbrand model M of a set S of sentences is a Her-

brand interpretation such that every sentence s in S is true in M.

The main difference from the standard definition of truth is the base case: If I is a

Herbrand interpretation, then a ground atom A is true in I if and only if A I. Thus, a

ruleX [antecedent Y [consequent1 ... consequentn]] is true in I if and only if,

for every ground instance antecedent that is true in I, there exists a ground instance

consequenti that is also true in I. Here the substitutions and replace the vari-

ables X and Y, respectively, by terms of the appropriate sort in the Herbrand universe

U of I. For simplicity, we assume that, except for time parameters, all fluents have

the same ground instances over U in all states.

3.2 The temporal structure of KELPS interpretations

The timestamping of fluents and events, and the restrictions on the syntax of KELPS

provide KELPS interpretations with a rich structure of sub-interpretations. This struc-

ture is captured by the following theorem, which is an immediate consequence of the

definition of truth for sentences in Herbrand interpretations.

Theorem 1.
1. If s is a conjunction of temporal constraints whose time parameters are all ground,

then s is true in Aux S* ev* if and only if s is true in Aux.

2. If s is an FOL sentence containing only state conditions, event atoms and temporal

constraints whose time parameters are all ground, then:

 a. If all the timestamps in s are the same time i,

 then s is true in Aux S* ev* if and only if s is true in Aux Si* evi*.

 b. If i is the latest timestamp in s, then s is true in Aux S* ev*

 if and only if s is true in Aux S0* ... Si* ev1* ... evi*.

There is an obvious similarity with the possible world semantics of modal logic. Each

sub-interpretation Aux Si* evi* is analogous to a possible world, and the single

interpretation Aux S* ev* is analogous to a complete frame of possible worlds

and accessibility relations. However, in KELPS, timestamped fluents and events are

all contained in a single Herbrand interpretation; but in the possible world semantics,

fluents belong to possible worlds, and events belong to accessibility relations.

3.3 Sequential notation

The antecedents and alternative consequents of reactive rules are both partially or-

dered state conditions and event atoms. Antecedents represent complex (or compo-

site) events, and alternative consequents represent conditional plans of actions. Alt-

hough these state conditions and event atoms are partially ordered, they are used to

recognize or generate linearly ordered sequences of states and events.

 It is useful to have a notation that distinguishes between the different sequences

represented by the same conjunction of partially ordered state conditions and event

atoms:

Notation. Let condition1 condition2 be a conjunction of state conditions and event

atoms, constraints a conjunction of temporal constraints, and C the conjunction

condition1 condition2 constraints. If there exists a substitution that grounds all

the time parameters of C, and if constraints is true in Aux, then:

1. condition1 < condition2 constraints denotes that for every timestamp t1 in

condition1 and every timestamp t2 in condition2 , t1 < t2.

2. condition1 condition2 constraints denotes that for every timestamp t1 in

condition1 and every timestamp t2 in condition2 , t1 t2.

We refer both to condition1 condition2 constraints and to condition1 condition2

 constraints as sequencings of C. Note that condition1 < condition2 and condition1

 condition2 hold when condition1 or condition2 are empty (equivalent to true).

3.4. Reactive interpretations

Fig. 1 gives examples of different kinds of models of a KELPS program. The follow-

ing definition characterizes reactive interpretations, which include reactive models as

a special case. Loosely speaking, an action occurs in a reactive interpretation if and

only if it occurs in the consequent of an instance of a reactive rule, and all earlier state

conditions and event atoms in the instance are already true.

Definition. Given a KELPS framework <R, Aux, C>, initial state S0 and set ev* of

timestamped events, let Cpre be true in I = Aux S* ev*, and let ev* = ext*

acts* be a partitioning of ev* into external events ext* and actions acts*. Then I is

reactive if and only if, for every action act in I, there exists a rule r R of the form:

 antecedent [other [earlier action remainder temp]] where:

1) temp consists of all the temporal constraints in earlieractionremainder temp

2) all the non-timestamp variables in action occur in antecedent or earlier
6
 and

3) there exists an instance r of r such that:

a) act is action

b) antecedent earlier action temp is true in I and

c) earlier < action remainder temp .

I is a reactive model of <R, Aux, C>, if and only if R is true in I.

4. The KELPS Operational Semantics

The operational semantics exploits the internal structure of KELPS interpretations

Aux S* ev* to generate them by progressively extending a partial interpretation

Aux S0* ... Si* ev1* ... evi* one step at a time. Moreover, it does so by main-

taining only the current state Si and the events evi that gave rise to Si, without remem-

bering earlier states and events. For this purpose, it maintains a current set of partially

evaluated rules Ri, which need to be monitored in the future, and a current goal state

Gi, which needs to be made true in the future.

To deal with complex events in the antecedents of rules without remembering past

states and events, the OS maintains a current set of rules Ri, starting with R0 = R.

Each rule in Ri is the instantiated remainder later temp consequent of a

rule earlier later temp consequent in R whose earlier part earlier is already

true.

Logically, the goal state Gi is a conjunction of disjunctions. Each disjunct of a dis-

junction is the instantiated remainder later temp of a rule antecedent [other

 [earlier later temp]] in R whose earlier part antecedent earlier is al-

ready true. Because of their similarity to goal clauses in logic programming, such

disjuncts are also called goal clauses in KELPS.

Operationally, the goal state is a set (conjunction) of independent threads, and each

thread is a goal tree, whose non-root nodes are goal clauses. The goal tree representa-

tion helps to structure the search space of alternative plans, and to guide the search

strategy for trying different alternatives. If the goal trees are searched in a depth-first

fashion, then they can be implemented by stacks, as in Prolog. Backtracking is possi-

ble, but previously generated actions and states cannot be undone.

The following specification of the OS is very abstract and ignores many optimiza-

tions that can improve efficiency. These are described in earlier papers [12, 13, 14,

15]. Some of these optimizations restrict the models that can be generated, and hence

affect the relationship between the interpretations generated by the OS and the inter-

pretations sanctioned by the model-theoretic semantics.

In the following definition, the OS is presented as an agent cycle. At the end of the

cycle, external events are input and combined with selected actions. The resulting

combined set of events is used to update the current state. In other versions of the OS,

these updates were performed at the beginning of the cycle.

6 This is a form of range restriction, which ensures that when an action is selected for execu-

tion, all its non-timestamped variables are grounded.

Definition. The OS Cycle. Initially S0 is given, R0 = R, G0 = {} and ev0 = {}.

For i ≥ 0, given Si, Ri, Gi , and evi, the i-th cycle consists of the following steps:

Step 1. Evaluate antecedents of rules. For every sequencing current < rest

constraints of the antecedent of an instance r of a rule r

 current rest constraints consequent

in Ri, where current is true in Aux Si* evi* and instantiates only the varia-

bles in current and any evaluable time variables in constraints that are functionally

dependent on the timestamp of current, add rest constraints consequent

as a new reactive rule to Ri.

If rest is empty (equivalent to true) and constraints is true in Aux then transfer

consequent from Ri to Gi, starting a new thread, which is a goal tree with conse-

quent at the root. Add each disjunct of consequent whose constraints are satisfi-

able as a child of the root.

Step 2. Evaluate state conditions and simple event atoms in goal clauses. Choose a

set of sequencings:

 current < rest constraints

of instances C of goal clauses C from one or more threads in Gi, where current is

true in Aux Si* evi* and instantiates only the variables in current and any

evaluable time variables in constraints that are functionally dependent on the

timestamp of current. For each such choice, add rest constraints to Gi, as a

child of C.

Step 3. Choose a conjunction of actions for attempted execution. Choose a set of

sequencings:

 actions τ rest τ constraints τ

of instances C τ of goal clauses C from one or more threads in Gi, where τ instantiates

only the timestamp variables in actions, and actions τ is the conjunction of all the

ground action atoms in C τ that have the same timestamp i+1. Let candidate-actsi+1

be the set of all the action atoms in all such actions τ.

Step 4. Update Si, Gi, Ri. Choose a subset actsi+1* candidate-actsi+1 such that Cpre

is true in Aux Si* evi+1*, where evi+1* = exti+1* actsi+1* and the set of external

events exti+1* is given. Let Si+1 = succ(Si, evi+1). Let Gi+1 = Gi and Ri+1 = Ri.

Note that the OS allows attempting to make an instance of a consequent of a reactive

rule true even though the same instance of the consequent has already been made true.

This can be avoided easily in the OS, but would make the corresponding definition of

reactive interpretations substantially more complex. However, there are other optimi-

sations that can also be made easily in the OS, without affecting the definition of reac-

tive interpretation. These optimisations include removing from Ri rules whose antece-

dents are timed out, and removing from Gi leaf node goal clauses containing a con-

junct that is timed out.

5 Relationships between the Model-theoretic Semantics and the

Operational Semantics

The proof of soundness for the OS of LPS [11, 12, 14] also applies to KELPS:

Theorem 2. Soundness. Given a KELPS framework <R, Aux, C>, initial state S0 and

sequence ext1,…, exti,… of sets of external events, suppose that the OS generates the

sequences acts1*,…, actsi*,… of actions and S1*,…, Si*,… of states. Then R Cpre is

true in I = Aux S* ev* if, for every goal tree that is added to a goal state Gi,

i ≥ 0, the goal clause true is added to the same goal tree in some goal state Gj, j ≥ i.

The following theorems characterise the interpretations generated by the OS.

Theorem 3. The OS generates only reactive interpretations. Given a KELPS

framework <R, Aux, C>, initial state S0 and set of external events ext*, let acts* be

the set of actions generated by the OS, and ev* = ext* acts*. Then I = Aux S*

 ev* is a reactive interpretation.

Theorem 4. The OS can generate any reactive interpretation. Given a KELPS

framework <R, Aux, C>, initial state S0 and set of external events ext*, let acts* be a

set of actions such that I = Aux S* ev* is a reactive interpretation. Then there

exist choices in steps 2, 3 and 4 such that the OS generates acts* (and therefore gen-

erates I).

6 Related Work

In terms of expressive power, KELPS is similar to Reaction RuleML [16], and much

of the comparison with other systems presented in [16] also holds for KELPS. More-

over, our earlier papers [11, 12, 13, 14] also include extensive discussions of the rela-

tionships between LPS and production systems, BDI agents, event-condition action

rules in active databases, action languages in AI and other models of computation. For

lack of space and to avoid repeating these comparisons, in this paper we will focus

instead on pointing out only the most important relationships, which are with

abductive logic programming, MetateM and Transaction Logic.

6.1 Abductive Logic Programming (ALP)

 Despite the fact that logic programming plays only a supporting role in LPS, and no

role at all in KELPS, ALP played an important role in the development of LPS, and

therefore of KELPS. More importantly, the origin [9, 10] of LPS [11, 12, 14] in ALP

[8] helps to explain the semantics of KELPS and the issues concerning completeness,

which are the focus of this paper.

An ALP framework is a triple <L, I, A>, where L is a logic program, I is a set of

integrity constraints, and A is a set of atomic sentences, which are candidate assump-

tions. KELPS is closely related to the special case of ALP in which L is a set of atom-

ic sentences including S0, ext* and Aux, I consists of reactive rules R and precondi-

tions Cpre, and A is the set of all possible actions. The biggest difference is the way in

which KELPS generates S*.

In applications of ALP to planning problems [3, 18], it has been common to in-

clude the event calculus [15] in the logic program L. Although this use of the event

calculus has been interpreted as a solution to the frame problem [17], we believe that

it cannot compete for efficiency with destructive change of state. However, destruc-

tive change of state does not have an obvious logical semantics. In particular, if states

are regarded as syntactic objects, defined by axioms, then it is not possible to change

the axioms during the course of trying to prove a theorem.

In KELPS, we solve this problem by regarding states and events as belonging to

model-theoretic structures. This corresponds to a semantics for ALP in which, given

an ALP framework <L, I, A>, an abductive solution is a subset of A, such that I is

true in a canonical model of L . This is very close to the semantics of KELPS.

The issues concerning the completeness of KELPS are of two different kinds. The

first is inherited from the semantics of abduction, namely that the semantics allows

models in which contains irrelevant actions. The second results from replacing the

event calculus by destructive updates.

In the case of abduction, the first issue is dealt with by imposing further restrictions

on the solutions - for example, requiring that be minimal, in the sense that no

’ (properly contained in) is also a solution. But guaranteeing minimality is

computationally expensive, and in practice some weaker, often informally specified

requirement, such as relevance, is imposed. In the case of KELPS, the analogous rele-

vance requirement is that generated actions be instances of action atoms that occur

explicitly in the consequent of a reactive rule.

The second issue does not arise in ALP when the event calculus is included in the

program L, because then the event calculus can be used to make facts true by generat-

ing events that initiate them, and to make facts false by generating events that termi-

nate them. In the case of KELPS, the more restricted causal theory Cpost is used only

to update states with given sets of events.

6.2 MetateM

MetateM [1] is a temporal modal logic language in which a program consists of sen-

tences of the logical form:

‘past and present formula’ implies ‘present or future formula’

Computation consists in generating a model in which all such sentences are true. The-

se programs are similar in spirit to the reactive rules of KELP and have a similar

model-theoretic semantics. The main differences are that, in KELPS, time is repre-

sented explicitly, models are classical rather than modal, and models are constructed

by means of destructive updates

 Completeness has been shown [1] for propositional MetateM, without external

events, maintaining the entire history of past states, backtracking from the future into

the past in the search for a model, and encoding frame axioms in the reactive rules.

6.3 Transaction Logic

Transaction Logic [2] is a declarative, logic-based language for defining complex

transactions, which update states of a logic program or database. Transactions in

Transaction Logic have a logical, model-theoretic semantics defined in terms of paths

between states, generated by means of destructive updates. Although there is no direct

analogue of reactive rules, they can be simulated by means of transactions.

KELPS shares with Transaction Logic the view of computation as generating se-

quences of destructively updated states that can be viewed as databases, in contrast

with conventional programming languages, in which states are simply collections of

variable-value assignments. KELPS also shares with Transaction Logic the view that

transactions are sequences of sets of actions and database queries expressed in full

FOL.
7
 The main differences are that in KELPS, transactions are the consequents of

reactive rules that are triggered when the antecedents become true, time is represented

explicitly, and all states, actions and events are combined into one model-theoretic

structure.

7 Conclusions and Future Work

This paper does not exhaust all of the theoretical issues concerning the semantics of

KELPS and LPS. However, there are also important practical issues concerning

knowledge representation and implementation that need further work. In particular,

there are two extensions of KELPS and LPS that would significantly improve their

expressive power. One is to allow the consequents of reactive rules to contain condi-

tions that also have antecedent-consequent form. This can be implemented simply by

allowing the remainder generated in step 2 of the OS to have the form of a reactive

rule. The other extension is to allow reactive rules to contain more complex event

conditions. This extension also does not affect the semantics, and can be implement-

ed, for example, by storing a history of past events.

 There are a number of implementations of LPS. Focusing on a single implementa-

tion and making it available for wider use are the main priority for future work.

Acknowledgements. Many thanks to Howard Boley for encouraging us with this

work, and to the referees for their helpful comments on the paper.

7 Transaction Logic also uses logic programs both to define intentional database predicates and

to define sequences of state conditions and events. This capability is also available in LPS,

but has been eliminated from KELPS for simplicity.

References
1. Barringer, H., Fisher, M., Gabbay, D., Owens, R., & Reynolds, M. (1996). The impera-

tive future: principles of executable temporal logic. John Wiley & Sons, Inc.

2. Bonner, A., Kifer, M. 1993. Transaction logic programming. In Warren D. S., (ed.),

Logic Programming: Proc. of the 10th International Conf., 257-279.

3. Eshghi, K. 1988. Abductive Planning with Event Calculus. In ICLP/SLP, pp. 562-579.

4. Gurevich, Y. (1995). Evolving algebras 1993: Lipari guide. Specification and validation

methods, 9-36.

5. Harel, D. 1987. Statecharts: A Visual Formalism for Complex Systems, Sci. Comput.

Programming 8, 231-274.

6. Jaffar, J., & Lassez, J. L. 1987. Constraint logic programming. In Proceedings of the

14th ACM SIGACT-SIGPLAN Symposium on Principles of programming languages,

ACM, 111-119.

7. Kakas, A. C., Kowalski, R., Toni, F. 1998. The Role of Logic Programming in Abduc-

tion, Handbook of Logic in Artificial Intelligence and Programming 5, Oxford Univer-

sity Press, 235-324.

8. Kakas, A. C., Mancarella, P., Sadri, F.,Stathis, K, and Toni, F. 2004. The KGP model of

agency, In Proc. ECAI-2004.

9. Kowalski, R. and Sadri, F. 1999. From Logic Programming Towards Multi-agent Sys-

tems, Annals of Mathematics and Artificial Intelligence, Vol. 25, 391-419.

10. Kowalski, R. and Sadri, F. 2009. Integrating Logic Programming and Production Sys-

tems in Abductive Logic Programming Agents. In Proceedings of The Third Interna-

tional Conference on Web Reasoning and Rule Systems, Chantilly, Virginia, USA.

11. Kowalski, R. and Sadri, F. 2010. An Agent Language with Destructive Assignment and

Model-Theoretic Semantics, In Dix J., Leite J., Governatori G., Jamroga W. (eds.),

Proc. of the 11th International Workshop on Computational Logic in Multi-Agent Sys-

tems (CLIMA), 200-218.

12. Kowalski, R. and Sadri, F. 2011. Abductive Logic Programming Agents with Destruc-

tive Databases, Annals of Mathematics and Artificial Intelligence, Vol. 62, No. 1, 129-

158.

13. Kowalski, R. and Sadri, F. 2012b. A Logic-Based Framework for Reactive Systems,

Rules on the Web: Research and Applications, 2012 – RuleML 2012, Springer-Verlag.

A. Bikakis and A. Giurca (Eds.), LNCS 7438, pp. 1–15.

14. Kowalski, R. and Sadri, F. 2014. Model-theoretic and operational semantics for Reac-

tive Computing. To appear in New Generation Computing.

15. Kowalski, R., Sergot, M. 1986. A Logic-based Calculus of Events. In: New Generation

Computing, Vol. 4, No.1, 67—95.

16. Paschke, A., Boley, H., Zhao, Z., Teymourian, K., & Athan, T. 2012. Reaction RuleML

1.0: standardized semantic reaction rules. In Rules on the Web: Research and Applica-

tions, Springer Berlin Heidelberg, pp. 100-119.

17. Shanahan, M. 1997. Solving the frame problem: a mathematical investigation of the

common sense law of inertia. MIT press.

18. Shanahan, M. 2000. An abductive event calculus planner. The Journal of Logic Pro-

gramming, 44(1), 207-240.

19. Fikes, R. E., & Nilsson, N. J. 1972. STRIPS: A new approach to the application of theo-

rem proving to problem solving. Artificial intelligence, 2(3), 189-208.

http://www.springerlink.com/index/611611L136R3714R.pdf

